FLUE GAS CLEANING

RELY ON GOOD EXPERIENCES AND MEET YOUR EMISSION REQUIREMENTS

Protection of our natural resources for the sake of future generations motivates us to constantly improve our technical solutions to control the emission limits of industrial facilities. Furthermore, emission limit values for dust, NOx and SO_x for such facilities are constantly being revised by legislation.

WE ARE THE RIGHT TEAM FOR SPECIAL CHALLENGES!

Upgrades to existing flue gas cleaning systems and retrofits of state-of-the-art equipment for sulphur dioxide, nitric oxide, mercury and dust removal are our day-to-day business – and this is reflected in our extensive reference list and by the satisfaction of our customers.

OUR KNOWLEDGE AND EXPERIENCE HELP YOU TO MEET CURRENT ENVIRONMENTAL REQUIREMENTS IN THE MOST COST-EFFECTIVE MANNER!

TURN OUR EXPERIENCE INTO YOUR ADVANTAGE!

CONTACT

Adrian Stefan Department Manager Eastern Europe

adrian.stefan@steinmueller.com +49 (0) 2261 / 78950 - 507

FLUE GAS CLEANING NOx REDUCTION SYSTEMS

RETROFITTED SCR FOR LOW NOx EMISSIONS

APPLICATION	TECHNICAL DATA	SCOPE OF SUPPLY
 Power Plants and Industrial Boilers Low NOx Burners (LNB) Selective catalytic reduction (SCR) 	 Emissions: NOx < 50 mg/m³ (STP) NH₃ slip < 1 mg/m³ 	 Consultancy Process engineeri Mechanical design
with honeycomb catalyst with plate catalyst	FUEL TYPE	CFD simulations Supply & Installat
 Selective non-catalytic reduction (SNCR) e.g. in the cement industry 	Bituminous coalHeavy fuel oil & residues	Optimization betwee LNB and SCR / SN
Benefits	 Waste/Sludge 	 Adaptation of boil
- Reduction of NOx and $\rm NH_3$ emissions	 Lignite 	and water-steam
Extension of fuel rangeHigh availability	 Biomass co-firing 	 Adaptation of heating surfaces
 Increase of operational flexibility 		 Optimization of

Reduced NH₃ consumption

- Consultancy Process engineering •
 - Mechanical design
 - CFD simulations
- Supply & Installation Optimization between
- LNB and SCR / SNCR
 - Adaptation of boiler and water-steam cycle
 - Adaptation of heating surfaces
- Optimization of flue gas distribution and NH₃ injection
- Commissioning
- Licensing

REFERENCE LIST EXCERPT

REFERENCE

Feasibility study for retrofit of an SCR plant, Heide Refinery, Germany

Study for upgrade options of air pollution control equ answer to BREF 2017, Lignite, 227 MWel, Maritza Eas Maritza, Bulgaria

Feasibility study for co-firing of petcoke, 200 t/h, Heavy Fuel Oil and Low-Pressure Gas, Shell Wesselin

Engineering and supply of an SNCR test plant to opti existing SNCR, Cement Plant Rüdersdorf, Germany

Concept design study: assessment, comparison and s feasible NOx reduction technologies and concept engi total of 10 bituminous coal fired power stations, Sout

Supply and implementation of a new oil and gas firin steam generator plus retrofit of a catalytic DeNOx sy Heavy Fuel Oil and Low-Pressure Gas, Shell Wesselin

License and know-how transfer agreement for catalyt system, China

Owner's engineering for 3 SCR installations, modifica steam generators, 75 t/h, 110 t/h, 150 t/h, firing Refir Oil and Gas, Mineral Oil Refinery Oberrhein (MIRO), G

Engineering and retrofit of an SCR-DeNOx plant, 200 Fuel Oil and Low-Pressure Gas, Shell Rheinland Refir

LEGEND

BAT Best Available Technology BREF BAT Reference Documents CFB Circulating Fluidized Bed

CHP Combined Heat & Power Plant ESP Electrostatic Precipitator FGD Flue Gas Desulphurization

	CLIENT
	Raffinerie Heide GmbH, Hemmingsedt, Germany
uipment in st 3,	ContourGlobal Maritsa East 3, Sofia, Bulgaria
ng, Germany	Shell Deutschland Oil GmbH, Wesseling, Germany
imize the	CEMEX Zement GmbH, Rüdersdorf, Germany
selection of Jineering for a th Africa	Eskom Enterprises, Johannesburg, South Africa
ng system at a rstem, 200 t/h, ng, Germany	Shell Deutschland Oil GmbH, Wesseling, Germany
tic DeNOx	Guizhou XingYun Environment Protection Co. Ltd., Guiyang, P.R. of China
ation of 5 nery Residues, Germany	MIRO Karlsruhe, Germany
t/h, Heavy nery, Germany	Shell Deutschland Oil GmbH, Wesseling, Germany

SCR Selective Catalytic Reduction STP Standard Temperature and Pressure **Power Station** PS

FLUE GAS CLEANING

WET FLUE GAS DESULPHURIZATION SYSTEMS

- INCREASE OF REMOVAL EFFICIENCY
- REDUCTION OF POWER CONSUMPTION

APPLICATION	TECHNICAL DATA	SCOPE OF SUPPLY	
 Fields of Application Power plants Industrial plants Benefits Reduction of pollutant emissions (SO₂, SO₃, mercury, dust) Increase of operational flexibility Optimized consumption of limestone Optimized distribution of oxidation air Reduction of auxiliary energy consumption SOx < 100 mg/m³ (STP) corresponding to removal efficiencies > 99 % Dust < 3 mg/m³ (STP) Upgrade with neutral pressure drop design possible FUEL TYPE Bituminous Coal Lignite Biomass co-firing Waste/Sludge Oil 	 Retrofit, Revamping and New-Built FGDs Supply & installation (EPC) of tray for BREF compliance Process engineering = CFD simulations 		
	FUEL TYPE	Mechanical designEP for core process	
	 Bituminous Coal Lignite Biomass co-firing Waste/Sludge Oil 	equipment Optimization conceptsCommissioning	

REFERENCE LIST EXCERPT

REFERENCE

Engineering for optimization of absorber, 5.2 MWel, See Hamburg Wasser, Germany

Detail engineering and supply of 23 additional tray ba 480 MWel, Bituminous Coal, Mannheim PS Unit 8, Ger

Engineering and supply of a tray level for wet FGD, 22 Herten Waste-to-energy plant Unit IM 1, Germany

Study of upgrade options for air pollution control equ answer to BREF 2017 Lignite, 227 MWel, Maritza East Maritza, Bulgaria

Engineering for the conversion of absorber from lime 35 t/h, Lignite, Plant Brottewitz, Germany

Licence for dry CFB-FGD technology, 6 x 686 MWel, Bit Kendal PS, South Africa

Retrofit of a tray for FGD scrubber upgrade, 2 x 110 M Novaky PS, Slovakia

Feasibility study for the retrofit of a flue gas desulphur x 50 MWel, Bituminous Coal, International Paper Kwic

Retrofit of a tray for FGD scrubber upgrade, 86 MWel, Deuben PS, Germany

Retrofit of a tray for FGD scrubber upgrade, 600 t/h, I Bituminous Coal, Völklingen, Germany

Engineering and key component supply for a Wet FGI Lignite, Paroseni PS, Romania

FGD Tender evaluation, 6 x 800 MWel, Bituminous Coa Kusile PS, South Africa

LEGEND

BAT	Best Available Technology	CHP
BREF	BAT Reference Documents	ESP
CFB	Circulating Fluidized Bed	FGD

Combined Heat & I
 Electrostatic Prec
 Flue Gas Desulphi

	CLIENT
ewage Sludge,	Hamburg Stadtentwässerung AöR, Hamburg, Germany
askets, rmany	Grosskraftwerk Mannheim AG, Mannheim, Germany
2 MWth,	AGR Betriebsführung GmbH, Herten, Germany
uipment in t 3,	ContourGlobal Maritsa East 3, Sofia, Bulgaria
e to limestone,	Südzucker Plant Brottewitz, Germany
tuminous Coal,	Eskom Enterprises, Johannesburg, South Africa
MWel, Lignite,	Slovenske elektrarne a.s., Bratislava, Slovak Republic
rization plant, 3 dzyn, Poland	International Paper Kwidzyn Sp. z.o.o., Kwidzyn, Poland
., Lignite,	Mitteldeutsche Braunkohle- gesellschaft GmbH, Germany
Fenne PS,	Steag AG Saar-Völklingen, Germany
D, 150 MWel,	LAB GmbH, Germany for Electro- centrale Paroseni S.A., Romania
al,	Eskom Enterprises, Johannesburg, South Africa

Power	Plant
cipitato	r
urizati	on

SCR	Selective Catalytic Reduction
STP	Standard Temperature and Pressure
PS	Power Station

FLUE GAS CLEANING MERCURY REMOVAL

REMOVAL EFFICIENCY INCREASEBEST AVAILABLE TECHNOLOGY

APPLICATION	AVAILABLE TECHNOLOGIES	SCOPE OF SUPPLY
 Fields of application Thermal power plants Waste incineration plants Scope of application Mercury balance assessments with own on-line mercury analyzers Integrated engineering solutions Benefits 	 Adsorption with activated carbon Duct injection Low pressure moving bed (patent pending) Separation in the flue gas desulphurization process Tray (reduction of mercury re-emission) Adding procipitating or 	 Mercury measurements and speciation Consultancy and optimization concepts Process engineering Engineering, supply and installation of components
 Increase of operational flexibility Reduction of mercury emissions 	complexing agent	

REFERENCE LIST EXCERPT

REFERENCE

Recording of mercury removal in correlation to SO_2 r Assessment of sources and sinks of mercury, 530 t/h Coal, CHP Fenne, Völklingen, Germany

Switch of neutralizing agent in the FGD and evaluatio cussion on mercury removal, 35 t/h, Lignite, Plant Br Germany

Assessment of chemical heavy metal precipitation an ing adjustment of the absorber water cycle, 750 MWe Coal, Mehrum PS, Germany

Increase of the SO_2 capture in the second stage of a scrubber without negative effects on the overall mer rate, 5.2 MWel, Vera Hamburg, Germany

Increase of SO_2 capture in a two-stage wet FGD scrub reducing mercury removal rate, 22 MWth, Herten Wa plant, Germany

BREF impact study and concept development on mer in the FGD, Lignite, 227 MWel, Maritza East 3, Maritza

Petcoke (co-)combustion study, quantification of the c increase In heavy metals' concentrations, 200 t/h, He and Low-Pressure-Gas, Shell Wesseling, Germany

Consulting & engineering support to assess sources a mercury in the power plant, Lignite, 188 MWth, Amsde Germany

Consulting and engineering support to assess source of mercury in the power plant, 11x250 MWel, Lignite, PS, Germany

LEGEND

BATBest Available TechnologyBREFBAT Reference DocumentsCFBCirculating Fluidized Bed

CHP Combined Heat & I ESP Electrostatic Prec FGD Flue Gas Desulpho

Proven and robust technologies

	CLIENT
removal.	STEAG AG,
n, Bituminous	Saar-Völklingen, Germany
n its reper-	Südzucker Werk,
ottewitz,	Brottewitz, Germany
nd correspond-	KW Mehrum GmbH,
el, Bituminous	Hohenhameln, Germany
two-stage wet	Hamburg Stadtentwässerung
rcury removal	AöR, Hamburg, Germany
bber without	AGR Betriebsführung GmbH,
Iste-to-energy	Herten, Germany
rcury removal	ContourGlobal Maritsa East 3,
a, Bulgaria	Sofia, Bulgaria
corresponding	Shell Deutschland Oil GmbH,
eavy Fuel Oil	Wesseling, Germany
and sinks of	Romonta GmbH, Seegebiet
orf PS,	Mansfelder Land, Germany
es and sinks	Lausitz Energie Kraftwerk AG,
Jänschwalde	Cottbus, Germany

Power	Plant
cipitato	or
urizati	ion

SCR	Selective Catalytic Reduction
STP	Standard Temperature and Pressure
PS	Power Station

FLUE GAS CLEANING MERCURY MONITORING AND MASS BALANCING

- PORTABLE CONTINUOUS MONITORING
- CLOSING OF MERCURY BALANCE
- MERCURY REMOVAL CONCEPTS

APPLICATION	TECHNICAL DATA	SCOPE OF SUPPLY
 Fields of Application Speciation and quantification of elemental, oxidized and particulate mercury Testing of permanent emission 	 High sensitivity: 0.05 µg/m³ Fast response: t(90) = 180 s Calibration certified (U.S. National Institute of Standards and Technology) 	 Analyzer rental Measurement planning & execution Remote monitoring possible
monitoring systems (single probes and long term)	FOCUSSED FUEL TYPES	ConsultingClosing of mercury
 Testing of influencing parameters (fast response time) 	Bituminous CoalLigniteWaste	 Plant specific mercury removal concepts
 Benefits Portable modular design Quick and easy transport Integrated calibration 	SludgeOil	(choice of removal technologies)Engineering assistance, e.g. feasibility studies

REFERENCE LIST EXCERPT

REFERENCE

Recording of mercury removal in correlation to SO_2 re Assessment of sources and sinks of mercury, 530 t/h Coal, CHP Fenne, Völklingen, Germany

Switch of neutralizing agent in the FGD and evaluation cussion on mercury removal, 35 t/h, Lignite, Plant Bro Germany

Assessment of chemical heavy metal precipitation an ing adjustment of the absorber water cycle, 750 MWe Coal, Mehrum PS, Germany

Increase of the SO₂ capture in the second stage of a scrubber without negative effects on the overall mer rate, 5.2 MWel, Vera Hamburg, Germany

Increase of SO_2 capture in a two-stage wet FGD scrub reducing mercury removal rate, 22 MWth, Herten Was plant, Germany

BREF impact study and concept development on mer in the FGD, Lignite, 227 MWel, Maritza East 3, Maritza

Petcoke (co-)combustion study, quantification of the c increase In heavy metals' concentrations, 200 t/h, He and Low-Pressure-Gas, Shell Wesseling, Germany

Consulting & engineering support to assess sources a mercury in the power plant, Lignite, 188 MWth, Amsde Germany

Consulting and engineering support to assess source of mercury in the power plant, 11x250 MWel, Lignite, PS, Germany

LEGEND

BAT	Best Available Technology	CHP
BREF	BAT Reference Documents	ESP
CFB	Circulating Fluidized Bed	FGD

P Combined Heat &P Electrostatic PrecD Flue Gas Desulph

	CLIENT
removal.	STEAG AG,
n, Bituminous	Saar-Völklingen, Germany
n its reper-	Südzucker Werk,
ottewitz,	Brottewitz, Germany
nd correspond-	KW Mehrum GmbH,
el, Bituminous	Hohenhameln, Germany
two-stage wet	Hamburg Stadtentwässerung
rcury removal	AöR, Hamburg, Germany
bber without	AGR Betriebsführung GmbH,
Iste-to-energy	Herten, Germany
rcury removal	ContourGlobal Maritsa East 3,
a, Bulgaria	Sofia, Bulgaria
corresponding	Shell Deutschland Oil GmbH,
eavy Fuel Oil	Wesseling, Germany
and sinks of	Romonta GmbH, Seegebiet
orf PS,	Mansfelder Land, Germany
es and sinks	Lausitz Energie Kraftwerk AG,
Jänschwalde	Cottbus, Germany

Power	Plant
cipitato	or
urizati	ion

SCR	Selective Catalytic Reduction
STP	Standard Temperature and Pressure
PS	Power Station

FLUE GAS CLEANING DRY FLUE GAS CLEANING SYSTEMS

CFB-FLOW REACTOR

PROCESS FILTER (PF)

ULTRA HIGH POLLUTANT REMOVAL RATES HIGH AVAILABILITY

- MINIMUM PLANT AREA
- LOWEST WATER AND SORBENT CONSUMPTION

BENEFITS

APPLICATION

Fields of use

- Coal fired boiler plants
- Heavy fuel oil fired boiler plants
 Refinery residue fired boiler plants
 Biomass boiler (incl. Bio-

mass-waste) plants

- Waste, Refuse-Derived-Fuel (RDF) and sewage sludge incineration plants
- Process flue gases from
- Aluminium industry (e.g. electrolysis off gases)
- Steel industry (e.g. sinter plant off gases)
- Cement industry (e.g. process gases)

Simultaneous emission reduction for

TECHNICAL DATA

- SO₂ < 200 / < 10 mg/m³ (STP)
- SO₃ < 1 mg/m³ (STP)
- HCl < 1 mg/m³ (STP)
- HF < 1 mg/m³ (STP)
- Hg < 1 µg/m³ (STP)
 Dust < 2 mg/m³ (STP)

SCOPE OF SUPPLY

New-built FGCs and retrofit

New-Duilt FOCS and Tell O

- ConsultancyLicensing
- Project management
- Process engineering
- Basic engineering
- Detail engineering
- Supply & installation

Commissioning

- Compact design with low plant area requirements
- 10.000 to 4.500.000 m³/h
 with a single reactor
- High availability > 98 %
 High turn down ratio
- Flexibility in utilization of absorbents
- Low water consumption incl. wastewater
- Fuel flexibility e. g. SO₂ reduction from 8.000 mg/ m³ (STP) down to below 200 mg/m³ (STP)
- Fuel flexibility e. g. HCl reduction from 2.000 mg/ m³ (STP) down to below 10 mg/m³ (STP)
- No additional operator staff
- Low maintenance and spare parts

REFERENCE LIST EXCERPT

REFERENCE

License for Dry CFB-FGD technology, 6 x 686 MWel, Bituminous Coal, Kendal PS, South Africa

License for Dry CFB-FGD technology, coal and coal w secondary fuels fired plants, Poland

Basic and detail engineering, procurement and suppl installation and commissioning of 2x flue gas desulpl and de-dusting plants, 185 MWth

Basic-, detail engineering, procurement and supply in installation and commissioning of 2x flue gas desulph and de-dusting plants, 181 MWth

Basic-, detail engineering, procurement and supply in installation and commissioning of 2x flue gas desulph de-dusting plants, 82 MWth

Basic-, detail engineering, procurement and supply in installation and commissioning of 2x flue gas desulph de-dusting plants, 81 MWth.

Consultancy, engineering, supply and advisory servic optimization of a water injection system upgrade for cleaning and de-dusting plant.

BEYOND THAT

More than 70 GRAF-EnviroPro-team reference plants with previous Dry-CFB-FGC technology & Process Filter for almost any fuel from 10.000 to 3.500.000 m^3/h with a single reactor.

LEGEND

BAT	Best Available Technology	(
BREF	BAT Reference Documents	E
CFB	Circulating Fluidized Bed	F

CHP Combined Heat & Power Plant ESP Electrostatic Precipitator FGD Flue Gas Desulphurization

	CLIENT
	STEINMÜLLER ENGINEERING GMBH for (Eskom Enterprises, Johannesburg, South Africa)
vith	INSTAL-FILTER SA, Kościan, Poland
y including hurization	INSTAL-FILTER SA, Kościan, Poland for (ENERGETYKA Group KGHM, Lubin, Poland)
ncluding hurization	INSTAL-FILTER SA, Kościan, Poland for (ENERGETYKA Group KGHM, Polkowice, Poland)
ncluding hurization and	INSTAL-FILTER SA, Kościan, Poland for (Energetyka Cieplna Sp. z o.o., Skierniewice, Poland)
ncluding hurization and	INSTAL-FILTER SA, Kościan, Poland for (Miejskie Przedsiębiorstwo Energetyki Cieplnej Sp. z o.o., Włocławek, Poland)
ce for a flue gas	Solvay Chemicals GmbH, Rheinberg, Germany

SCRSelective Catalytic ReductionSTPStandard Temperature and PressurePSPower Station

FLUE GAS CLEANING DUST REMOVAL SYSTEMS

- LOW DUST EMISSIONS = **HIGH EFFICIENCY**
- REDUCTION OF POWER CONSUMPTION

Licensing

APPLICATION	TECHNICAL DATA	SCOPE OF SUPPLY	
 Power Plants and Industrial Boilers Dry electrostatic precipitator Fabric filters also in combination with dry FGD (CFB-FGD) Wet electrostatic precipitator 	 Emissions: Dust < 8 mg/m³ (STP) In combination with Wet FGD upgrades: Dust < 3 mg/m³ (STP) 	 Retrofit, Revamping and New-Built Consultancy (e.g. for BREF compliance) Process engineering 	
 Benefits Reduction of dust emissions Extension of fuel range Upgrade of ESPs within existing footprint and structure Energy savings through optimized high voltage supply. 	FUEL TYPE	Mechanical design	
	 Bituminous coal Lignite 	 CFD simulations of flue gas path and flow optimization 	
	Biomass co-firingWaste/SludgeOil	 Supply & installation Optimization concepts Commissioning 	

REFERENCE LIST EXCERPT

REFERENCE

Study of upgrade options for dust removal system (E FGD tray) in answer to BREF 2017

Study of upgrade options for air pollution control equ answer to BREF 2018 Lignite, 227 MWel, Maritza East Maritza, Bulgaria

CFD calculations flow optimization, Milazzo Refinery,

Retrofit of TR sets and control equipment for electros precipitator, 166,000 m³/h (STP), Milazzo Refinery, Ita

Boiler and ESP design study and know-how transfer 6 x 600 MWel, Bituminous Coal, Tutuka PS, South Afr

Rehabilitation and optimization of ESP, 610,000 m³/h Govora PS, Romania

Rehabilitation of electrostatic precipitator behind fluid cracker plant (FCC), 166,000 m³/h (STP), Milazzo Refi

Rehabilitation of electrostatic precipitator behind fluid catalytic cracker plant (FCC), 90,000 m³/h (STP), BP Refinery Gelsenkirchen, Germany

Concept engineering study for the optimization of ESI 6 x 600 MWel, Bituminous Coal, Tutuka PS, South Afr

CFD flow simulation and optimization for ESP downsi pyrite roaster in sulphuric acid plant, 30,000 m³/h (S Haldor Topsoe Plant, Denmark

CFD flow simulation for ESP, shale oil plant, 119,000 Eesti Energia Narva, Estonia

LEGEND

BAT	Best Available Technology	CH
BREF	BAT Reference Documents	ES
CFB	Circulating Fluidized Bed	FG

HP Combined Heat & Power Plant SP Electrostatic Precipitator GD Flue Gas Desulphurization

high voltage supply

- High availability
- Increase of operational flexibility

	CLIENT
SP versus	SLOVNAFT, a.s., Bratislava, Slovak Republic
uipment in	ContourGlobal Maritsa East 3,
t 3,	Sofia, Bulgaria
Italy	Raffineria di Milazzo S.C.p.A., Milazzo, Italy
static	Raffineria di Milazzo S.C.p.A.,
aly	Milazzo, Italy
for	Eskom Enterprises,
fica	Johannesburg, South Africa
(STP), Lignite,	CET Govora, Râmnicu Vâlcea, Romania
dized catalytic	Raffineria di Milazzo S.C.p.A.,
inery, Italy	Milazzo, Italy
dized	Ruhr Oel GmbH, Gelsenkirchen, Germany
Ps,	Eskom Enterprises,
fica	Johannesburg, South Africa
tream	Ion Blast Ltd.,
TP),	Helsinki, Finland
m³/h (STP),	Ion Blast Ltd., Helsinki, Finland

SCR Selective Catalytic Reduction STP Standard Temperature and Pressure PS Power Station

RELY ON GOOD EXPERIENCES

YOU CAN COUNT ON US AS EXPERTS IN THE AREAS OF

- COMBUSTION & INCINERATION
- AIR POLLUTION CONTROL
- HEAT TRANSFER & STORAGE
- ENGINEERING & CONSULTING
- AFTER SALES

ALLOW US TO ASSIST YOU IN YOUR EFFORT TO MEET UP-TO-DATE ENVIRONMENTAL DEMANDS WHILE REMAINING ECONOMICALLY EFFICIENT!

STEINMÜLLER ENGINEERING GMBH

IHI GROUP COMPANY Fabrikstraße 5 51643 Gummersbach Germany

www.steinmueller.com info@steinmueller.com

PHOTOS

Steinmüller Engineering GmbH, AVttention, Peiper Fotografie